
0 \ 0

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

0 DT I
00 VLSI-Mem&No. 89-536 F.(L. _ E

May 1989 SEP 0 5 1989

SS
Four Vector-Matrix Primitives

Ajit Agrawal, Guy E. Blelloch, Robert L Krawitz, and Cynthia A. Phillips

Abstract

This paper describes four APL-like primitives for manipulating dense matrices and vectors
and describes their implementation on the Connection Machine hypercube multiprocessor.
These primitives provide a natural way of specifying parallel matrix algorithms
independently of machine size or architecture and can actually enhance efficiency by
facilitating automatic load balancing. We illustrate their use in three numerical algorithms:
a vector-matrix multiply, a Gaussian-elimination routine and a simplex algorithm for linear
programming. We describe implementations of the primitives assuming load-balanced
embeddings of matrices and vectors on a hypercube multiprocessor architecture. The
primitives may indicate a change from one embedding to another. The implementations
are efficient in the frequently occurring case where there are fewer processors than matrix
elements. In particular if there are m > p Ig p matrix elements, where p is the number of
processors, then the implementations of some of the primitives are asymptotically optimal
in that the processor-time product is no more than a constant factor higher than the
running time of the best serial algorithm. Furthermore, the parallel time required is
optimal to within a constant factor.

We have implemented the primitives on the Connection Machine System, and this
implementation improved the performance of the simplex implementation by almost an
order of magnitude over a naive implementation, from 52 Mflops to 500 Mflops. We give
Connection Machine timings for the primitives and the algorithms.

bDIUSr1ON Sr.JAE. A

Approved for puhl- releame0
DiatributionUmted 89 9 0 1 03 8

,,- , : Car e ~Telephone
resaa' - Cer, e' Ins, lj*e MassachJseits (617) 253-8138

3 9321 0 Tecc-,<.a\ 021?9

IO

Acknowledgements

To appear in First Annual A CM Symposium on Parallel Algorithms and
Architectures, June 1989. This research was supported in part by Thinking
Machines Corporation and the Defense Advanced Research Projects Agency
under contract number N00014-87-K-0825. Phillips: was supported in part by
International Business Machines Corporation graduate fellowship.

Author Information

Agrawal: Yale University, New Haven, CT 06520.
Blelloch: Carnegie Mellon University, Pittsburgh, PA 15213.
Krawitz: Thinking Machines Corporation, Cambridge, MA 02139.
Phillips: Laboratory for Computer Science, Room NE43-338, MIT, Cambridge,

MA, 02139. (617) 253-7583.

Copyright* 1989 MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy
is for private circulation only and may not be further copied or distributed, except
for government purposes, if the paper acknowledges U. S. Government sponsor-
ship. References to this work should be either to the published version, if any, or
in the form "private communication." For information about the ideas expressed
herein, contact the author directly. For information about this series, contact
Microsystems Research Center, Room 39-321, MIT, Cambridge, MA 02139;
(617) 253-8138.

Four Vector-Matrix Primitives'

Ajit Agrawal2

Guy E. Blelloch"
Robert L. Krawitz 4

Cynthia A. Phillips#4

Abstract 1 Introduction

When implementing a parallel algorithm, it is conve-
This paper describes four APL-like primitives for ma- nient to have a high-level parallel language which pro-
nipulating dense matrices and vectors and describes vides the convenience one has come to expect from well-
their implementation on the Connection Machine' hy- established serial languages. One wishes to concentrate
percube multiprocessor. These primitives provide a nat- on the details of the algorithm, allowing the language
ural way of specifying parallel matrix algorithms inde- to abstract away details of the machine including the
pendently of machine size or architecture and can ac- number of processors, the interconnection network, and
tually enhance efficiency by facilitating automatic load the embedding of data elements into processors. How-
balancing. We illustrate their use in three numeri- ever, since parallel machines are currently very expen-
cal algorithms: a vector-matrix multiply, a Gaussian- sive and used for huge, computationaly intensive ap-
elimination routine and a simplex algorithm for lin- plications, mers often will not give up performance for
ear programming. We describe implementations of the ese of programming and portability. Techniques for
primitives assuming load-balanced embeddings of ma- mapping high-level descriptions of algorithms onto effi-
trices and vectors on a hypercube multiprocessor ar- cient code for various parallel machines have therefore
chitecture. The primitives may indicate a change from become very important and will probably consume a
one embedding to another. The implementations are large portion of computer science research in the next
efficient in the frequently occurring cae where there decade.
are fewer processors than matrix elements. In partic- This paper provides such a technique by showing
ular if there are m > pIgp matrix elements, where p how very high-level descriptions of a broad clas of dense
is the number of processors, then the implementations matrix algorithms can be mapped onto a real machine,
of some of the primitives are asymptotically optimal in the Connection Machine, with no performance loss over
that the processor-time product is no more than a con- hand coded versions. It presents 4 high-level APL-like
stant factor higher than the running time of the best se- primitives and illustrates code for a vector-matrix mul-
rial algorithm. Furthermore, the parallel time required tiply, a Gaussian-elimination routine and a simplex al-
is optimal to within a constant factor. gorithm for linear programming based on these primi-

tives. The algorithms are straight-forward implementa-
We have implemented the primitives on the Con- tion of the clasi algorithms. The code is high-level,

nection Machine System, and this implementation in- it works for any sized matrices , and contains no infor-
proved the performance of the simplex implementation mation on how data is mapped onto processors nor on
by almost an order of magnitude over a naive imple- how the data should be communicated. Therefore it is
mentation, from 52 Mflops to 500 Mflops. We give concise: none of our routines contain more than 20 lines
Connection Machine timings for the primitives and the of code. The paper then discusses our implementation
algorithms. of the primitives on the Connection Machine and gives

Accesion For
- I cnnction Machine Systm is a rqistered trademark of

NTIS CRA&I ThnkingMachin Coqo .,sion
DTIC TAB [v 3 iegiMlU ty
U n3nnoorccd o 4'hiaking Machisa CArpnrion
Jul dtI ur 'Mrr L toy for Computer Science

-- ~ ~ ~ ~ 6% res----- Ti each insppartud in pat by Thinking Mechines, in
put by the Ddemis Ad - I Reserch Proecso Agency under

BY Cntrat N00014.6r--oS5. Cynthia Phillip is supported in
~fl**pert by e M graduate hMowuhip.uis'ibution/ t Our current implIentation is restrcted to ,um which are

powers of two.~AvI:biiity Cu'Ic5

Avji, j-(, ui

Scalar Instructions: a hypercube by Johnston (12]. Our implementations of
+, -, x, ... the primitives are simple, dean subcases of the n edge-

Global Instructions: disjoint spanning binomial trees (NSBT) algorithms due
Broadcast, gmin, g-max to Johamon and Ho (133. Our extract implementation

is a version of what they call one-to-all personalized
Elementwise Vector and Matrix Instructions: communication within subcubes and our distribute im-

P'+, P'-, P-*, P-, " plementation is an example of all-to-all broadcasting.
Vector-Matrix Instructions: Other related algorithms for hypercubes are discussed

insert, extract, distribute, reduce by Fox and Furmaski [8), Stout and Wager [17], and
Deshpande and Jenevin [6].

Figure 1: The instructions we use in the algorithms de- To motivate some of the decisions we made in the
Figribed n ther. instructions ominth e aithms selection and implementation of primitives, let us ex-
scribed in this paper. Global instructions compute a single
value from all elements of a vector or matrix or broadcast amine, as an example, the solution of linear programs

a single value across a vector or matrix. Elementwue using the Dantmig simplex method. The standard form

instructions perform an operation elementwise over corre-
sponding elements of equal sized matrices or vectors. minimize cT: snh that { A = b

f x > 0

actual timings for both the primitives and two of the where c is an M2-dimensional integer objective function
algorithms. The simplex and vector-matrix multiply vector, A is an mi X M2 integer constraint matrix, b isalgorthfs thasimp an d vthectormtrise aan mr-vector of integers, and z is a real m 2-vector of
execute faster than any other code for these applicax unknowns. AU information needed to perform a step of
tions for the Connection Machine. With 256 matrix the computation is kept in a tableau which is initially the
elements per processor, an iteration of simplex runs at constraint matrix A augmented by the column vector b500 ifops and Matrix-Vector multiply runs at over 1 and the row vector c. A single step of the computation

Gflop on a 64K CM-2 (single precision). Versions of the an the on e step of the compin ation

primitives we implemented are now included in PARIS, is then one step of Gaussian elimination on the entire

the parallel instruction set of the Connection Machine. tableau where the pivot column has the most negative

The four primitives we consider extract a vector from positive value of b/ within the pivot column. Section 2

a row or column of a matrix, inert a vector into a row or explains some of the ideas behind thr method-for now,
column, distrbute a vector across the rows or columns, an understanding of the functionality suffices.
and reduce the rows or columns into a vector using a If we have as many processors as tableau elements,
binary associative operator such as +, maximum, or a straight-forward implementation of one simplex step
minimum. It is convenient to also use an operation ca be written as follows:
which spreads a row or column across its matrix (extract
followed by distribute). We also assume the existence Algorithm Samplez
of various other simple primitives-these primitives are
summarized in Figure 1. ;tableau T ((mi + 1) x (M 2 + 1))

Although the extract and insert primitives might ;initiallV matrix A augmented by
seem trivial, their implementation is actually as com- ;column vector B and row vector C
plex as the implementation of the distribute and reduce
primitives. They involve rearranging the data among repeat forever:
the processors by communicating anng tr-.es embed. I selecting processors that initially held vector C
ded within subcubes occupied by th, ,) Yj or columns 2 pivotcolnum = column # of processor
of a matrix. This data transfer gua , ,o- optimal holding g-min(T)
load balancing of any row or column i, extracted (if g-min(T) 2 0, exit Simplex successfully)
from a matrix. Thus after extraction each processor 3 selecting processors that initially held vector B
holds (within one) the same number of vector elements 4 send value of T to pivot column
(= [m/p] where m is the number of matrix elements (store locally as B)
and p is the number of processors). Load balancing the 5 selecting processors in
vectors improved the performance of the simplex algo- Pivot column with T > 0
rithm from under 100MFIop to over 500Mflops. (if none, exit Simplez unsuccessfully)

There has been considerable research on implement- 6 Ratio = p-+(B, T)
ing dense matrix algorithms on hypercube based ma- 7 pivotrmmum = row # of processor
chines [14, 9, 12, 7, 3, 4]. This paper concentrates on holding g-min(Rsto)
how to get similar results without having to code for the 8 piotelement = A(pivotcolnum](pivotrounum]
particular machine. The final execution of the linear 9 selecting processors in the pivot row
systems solver is similar to the algorithm suggested for 10 T = p---(T, Broadcast(pivotelement))

f W 6 -l bla 5 Id -•; 5 II -&; I7

Lp., rC* *0 CO Ost 0 0 OgCo 0 0 C"11 000ofm" -!3+ 1 -F , - a a 00 0 a 00 a a 000 0 0 '

4 H CO OgC00 0C0 01 0 0

11-1-1 '' T g ir r i
UL.'J" .LL.JJ .L LIJ I a a alitaa a 0 a a 0 a 0,-- -- -- --J 4 - Ul 113 0 0 a :;l a l 0 :; 0 0 1 a 0 a a a 0"
-- -1.. I -. -t 1-.. -4.. ! 1I t J

•LJ. " 1 .4 ,1,1 Figure 3: All the elements of a single column are located
P2 in a small subset of the processors. In the example they

are located in 2 of the 8 procemors. When extracting a
Figure 2: Each processor in an P processor hypercube column, the elements are distributed across the processors
viewed as a p1 x p2 grid of processors holds a ki x k2 so that each processor gets one element of the column.
submatrix of the m, x m2 matrix (P = pxp2, m, = p, k,
and m2 = p2k2).

code above ran at 52 Mflops. After adding the load

11 send T value of pivot row to all rows balancing, the loop ran at 500 Mflops.
(store in Pivotrow) In seeking to generalize from this experience, we

12 send T value of pivot column to all column@ found that the four classes of primitives provide ex-
(store in Pivotcol) pressive power and potentially automatic efficiency im-

13 T = p--(T, p-*(Pivotrow, Pivotcol)) provement. In the simplex example, our inefficiencies
came from treating vectors as matrices. Distinguishing

In general, however, we would like to run problems between vector and matrix computations is not only
in which the tableau is larger than the number of pro- efficient, but also fits well into the way programmers
cessors. Figure 2 shows how we might map an ml x m2 think about computing on these objects.
matrix onto a machine where the processors can be logi- Section 2 gives examples of the use of the primitives
cally configured a a grid. Each processor holds a k1 x k2 in several applications including the simplex method
submatrix which is as square as possible (an aspect ra- for linear programming. The four classes of primitives
tio of at most 2). The runtime environment can keep provide cues that computation is shifting from a full
track of how a matrix is mapped onto the processors, matrix to a vector related to that matrix (eg. a row
and can automatically loop over all the elements in each or column), indicating that it may be a proper time
processor when operating on the matrix, for load balancing. Bookkeeping related to the looping

This embedding is load balanced with respect to the over matrix or vector elements within a processor is best
matrix since each processor holds an equal number of executed at ruatime rather than compile time because
matrix elements. Any given row or column, however, the binary code should be independent of the number
when viewed as a vector is not well-balanced at all as of processors in a machine. A compiler, however, can
shown in Figure 3. In particular, when performing the frequently decide whether is is better to load balance
divisions in lines 6 and 10 and the minimums in lines 2 during an extract or reduce operation or to leave the
and 7 in the simplex algorithm above, a small subset of elements in place.
the processors must perform many computations while Section 3 discusses the implementations of the prim-
the rest of the processors are idle. When computing itives for h rpercube multiprocessors with N = 2" pro-
on a single column, as in line 6, it may be more effi- cessors. Each processor has a unique address which is
cient to use the underlying interconnection network to Ig N = n bits long and each processor is directly con-
spread the work from the one active processor in each nected to all promsors whose address differs from its
row to the idle processors in its row. For example, in own in exactly one bit position. Two connected pro-
computing on the column selected in Figure 3, the two cesors whose address differs in bit i are called ,th.
active processors distribute one operation to each of the dimensional neighbors. The algorithms we present in
three idle processors in their rows so that each proces- this paper work on any hypercube multiprocessor, but
sor performs one operation. Furthermore, it may be they awe simple emolgh to run on a data parallel or-
beneficial to always leave the B and C vectors stored in dldecMtue in which each procsor executes the same
this load-balanced fashion and to update them in place. instruction broadcast from a fro end computer (also
In our implementation on the Connection Machine Sys- known as a single instruction multiple data architec-
tern, a carefully coded implementation similar to the ture).

Section 4 gives timings for an implementation of as we would if we were investigating a Markov process.
our primitives on the Connection Machine System [10]. At some cost in storage, we can store both the transi-
The current implementations are restricted in two ways. tion matrix and its transpose, then alternate which one
Firstly, the number of rows and columns in a matrix we use. Alternatively, we can pay Ig a time to transpose
must be a power of two. Secondly, a vector extracted either the vector or the matrix.
from a row of a matrix can only be distributed to or de-
posited in a row of a matrix of equal size as the matrix is Algorithm Matrix- Vector Multiply (MVM)
was extracted from. In Section 3 we discuss techniques ;matriz A (inl X M2)
for avoiding the first restriction. The Connection Ma- ;vector B
chine has a router for arbitrary interprocessor commu- ;temporary matrix TEMP (mi x M2)
nication and its processors have the ability to indirectly
address their memory; our algorithms, however, do not I Temp = distributt-row(B)
require the power of these features. 2 Temp = p-*(A, Temp)

Remarkably, although our implementations are very 3 return(+-rduce-to-column(Temp))
simple, the reduce and distribute primitives are opti-
mal for a hypercube in two senses: parallel time, and
processor-time product (work), provided the matrix is 2.2 Linear System Solution by LU Decom-
sufficiently large relative to the number of processors position
and each processor is capable of sending only a con-
stant number of messages in unit time. The next example demonstrates solution of a linear sys-

tem by LU decomposition with partial pivoting and
back solving. Given an m x rn matrix A, to compute

2 Example Applications upper triangular matrix U and lower triangular matrix
L such that A = LU, we perform m steps of Gaussian

In this section, we present CM implementations of elimination. Moving left to right through the matrix, we
matrix-vector multiplication, LU decomposition with extract the columns in sequence. We find the element
partial pivoting, solution of a linear system from an LU with the greatest absolute value, and extract its row.
decomposition and a vector b, and a simplex method We then divide the pivot column by the pivot element
for linear programming. These have been implemented itself, and distribute the pivot row and column across
using the primitives we described and are competitive the matrix. We replace the part of the pivot column be-
with all other CM implementations to date. low the pivot element, where it will serve as a column

of L. Finally, we perform Gaussian elimination on the
2.1 Matrix-Vector Multiply square below and to the right of the pivot row and col-

umn. Rather than physically exchanging the two rows,
The first example we present is a matrix-vector multi- which would yield a true lower and upper triangular
ply. Using a distribute, we spread the input vector over matrix, we record in a separate vector which row was
all rows of the matrix, multiply the two element-wise, eliminated in which iteration and use this information
and reduce all rows of the result by summing across the to find the diagonal in the solution phase.
rows, returning a column vector containing the matrix-
vector product. Thus, Algorithm LU Decomposition (LUD)

a,, 1 .•• al b Z ;matrix A (m x in)
a2l a22 a2, b2 ;LU decomposition with partial pivoting
S'";Returns LU in A, permutation vector in P

a,L am2 ... a, 1 For ifrom I to m Do

becomes 2 selecting rows and columns of A
that have not been pivoted onail 4 2 al, b, b2 .. 3 Col = xtract-column(A,i)

am] a2 a21 b b2 b 4 pivotrow = row # of g-max(p-abs)
: 5 Rote = extract-row(A, pivotrow)

aL i a,,2 . a, b2 ... bJ 6 P[pivotrowt] = i
7 pivotelement = A[i,pivotr o]

and the sums of the elementwise multiplications are 8 Cot = p.+(Col, Broadcast(pivotelement))
taken along the rows to yield the final result. 9 A as deposit-column(A, Cot, i)

One complication is that our algorithm accepts a row 10 Colmatris - dhtributs-colmn(Col)
vector as input but returns a column vector. This condi- 11 Rowmtris = distribut-row(Row)
tion causes less of a problem if we want to immediately 12 selecting positions in A that are not
use the vector in another matrix-vector multiplication, in the pivot row or column

13 A = p.-(A, p-*(Rowmatriz, Colmatriz)) equal to 0 (15]. Suck vectors, called basic feasible solu.
tions, corrmspoad geometrically to corners of the convex
(i 2 - i)-dimeamoeal polytope of all feasible solutions.

The forward and back solution phase is also straight- The simplex method for solving linear programs due to
forward. Given a vector 6, we first solve Li - b, divide Dantsig [5] starts at a basic feasible solution and pivots
I and U through by the diagonal such that the system to a new basic femible solution which improves the ob-
has a unit diagonal, and then solve Uz = V. A solution jective function. Algebraically, we increase one of the
step consists of extracting a column, multiplying it by zero-valued nonbaic variables (the entening variable)
the diagonal element, and subtracting from b. until one of the non-zero basic variables becomes zero.

In the Dantsig method of pivoting, the entering variable
Algorithm Solve Linear System from Decomposition is the one that will decrease the objective function by

the most (per unit increase in the variable).
;matrir LU (m x m) All the information necessary to perform the pivot-
;vector B ing is kept in a tableau where the objective function and
;permutation vector P all nonbasic variables are represented in terms of the
;Solve LUx = B basic variables. Since columns corresponding to the ba-

sic variables always form the identity matrix, we save
I For i from I to m Do space by not representing these columns (the code in
2 Column = extract-column(LU, i) Section I does not include this optimization). At the
3 pivot = Bix] such that i = p[k] start, the tableau is the constraint matrix A augmented
4 selecting the elements B[jI and Column j] by the column vector b and the row vector c. Vectors b

such that P[j] > i and c are also maintained in vector representation. We
5 B = p--(B, p-*(Column, Broadcast(pivot))) then use Gaussian elimination to eliminate all columns
6 send logical diagonal of LU to first col of Temp corresponding to basic variables. To form the tableau
7 Diag = extract-column(Temp, 1) for which one basic variable is replaced by a nonbasic
;At this point B contains y from Lv = b variable then involves one step of Gaussian elimination.
;Divide U and B by the diagonal. The implementation of Simplex with Dantrig's rule

8 B = p--(B, Diag) is fairly straightforward. We first find the index of the
9 Temp = distribute-column(Diag) most negative coefficient of the objective function; piv-
10 Selecting positions in the logical oting on this variable will give us the most rapid im-

upper triangle of LU provement in the solution per unit increase in the en-
11 LU = p--(LU, Diag) tering nonbasic variable. If there are no negative coefli-
12 For i from m downto IDo cients, then we cannot make any improvement, and thus
13 Column = extract-column(LU, i) have finished successfully. We then extract the indexed
14 pivot = B[k] such that P[k] = i column, and select the positions corresponding to real
15 selecting the elements BUj] and Column[j] constraints, i e. only positive coefficients correspond

such that P[j] < i to basic variables that decrease as the entering variable
16 B = p--(B, p-*(Column, Broadcast(pivot))) increases. If there are no positive coefficients in the col-
17 unpermute B umn, then the system is unbounded; we can increase

the value of variable improving the objective function

2.3 Simplex method for linear program- without limit and never violate a constraint. To find

ming the limiting constraint, we divide the b vector by the
positive elements of the pivot column elemeutwise and

Our final example illustrates the Simplex method for find the index of the smallest ratio. The two indices
solving linear programming problems. The standard define the pivot element. We then perform a Gaussian
form of a linear programming problem is as follows: elimination step.

minimize CTZ such that (At = b Algorithm Simples (space-saving)
;tableau A ((mi + 1) x (, 2 + 1))

where c is an m2-dimensional integer objective function ;constramt vector B
vector, A is an m, x m2 integer constraint matrix, b is ;objective function vector C
an mi-vector of integers, and z is a real m2-vector of
unknowns. Generally we have mi < M2. repeat forever:

A vector z such that Ax = b and x > 0 is called a I pivotolnum = col # of element
feasible solution because it satisfies all the constraints, holding g-min(C)
If a linear program has an optimal solution, we can al- (if g-min(C) 2! 0, exit Simpler successfully)
ways find one such that m, of the entries in vector x are 2 Pivotcol = extract-column(A, pivotcolnum)

3 selecting positions in Pivotcol with values > 0 scribed above, we describe the implementation of the
(if none, exit Simplex unsuccessfully) row version of the extract primitive. The implement&-

4 Ratio = p--(B, Pivotcolumn) tion of the other primitives are similar and are pictured
5 pivotrownum = row # of element in Figures 5, 6, and 7. The deposit primitive is basi-

holding g-min(Ratso) cally the inverse of the extract primitive. The reduce
6 Pivotrow = extract-row(A,pivoiroumum) primitive is similar to the extract primitive but as well

;update pivot row and column as swapping data across the cube to load balance, the
7 pivotelement = A[pivotcolnum][pivotrownum] data is summed along the way. The distribute primitive
8 Pivotrow = p--(Pivotrow, Broadcast(pivotelement)) is basically the inverse of the reduce primitive.
9 Rowmatrix = spread-row(Pivotrow) All of the primitives are implemented by stepping
10 Coimatriz = spread-column(Pivotcol) through the dimensions of the hypercube with each pro-

;update constraint vector and objective function cessor simultaneously communicating with its neighbor
;on their own, even though updated later in that dimension. In the extract and reduce primitives,

II value = A[m, n] the number of data elements communicated typically
12 B = p--(B, p-*(Pivotcolumn, Broadcast(valse))) halves on each dimension step (each step halves the
13 C = p--(C, p-*(Pivotcolumn, value)) complexity). In the deposit and distribute primitives,

;Update the tableau the number of data elements communicated typically
14 A = insert-row(A, Pivotrow,pivotrownum) doubles on each dimension step. For the extract and
15 selecting positions of A that deposit primitives, only one processor from each pair of

are not part of pivot row or column communicating processors sends data. For the -educe
16 A = p--(A, p-*(Pivotrow, Pivotcolumn)) and distribute primitives, both neighbors generally send

equal amounts of data. None of the primitives require
indirect addressing on the processors, and the control

3 Implementation of Primitives is strictly data parallel.

In this section we present efficient implementations for 3.1 Extract
the four vector-matrix primitives on hypercube archi-
tectures and analyze the time and processor-time corn- The extract operation takes a matrix and an index r
plexities of these implementations. The implementa- within the bounds of the matrix and extracts row r as
tions are based on a particular embedding of matrices a row vector (see Figure 4). In the extract procedure,
and vectors on the hypercube. We show that both the we step through the dimensions, starting at the highest
time complexity and the processor-time complexity of dimension, and each processor containing elements of r
the reduce primitives are within a constant factor of op. sends half of its elements to its empty neighbor in that
timal provided that the matrix is sufficiently large rel- dimension. The result of the extract is that the vector
ative to the number of processors. Finally, we discuss elements originally held in the processor at grid address
generalizations to higher dimensional matrices, matri- (rp, j) are evenly distributed among the processors in
ces whose dimensions are not powers of 2, and matrices column j.
where rows or columns are favored. Algorithm Extract-Row

Figure 2 shows how we map an m1 xm2 matrix on an
N-processor hypercube. Each processor holds a k, x k2 ;matrix
submatrix which is as square as possible. The proces- ;row number r (processor row rp, offset r,.)
sors can themselves be viewed in a grid (perhaps in
row-major order with respect to hypercube addresses), I Let ro, r1,... rl,,, - be the bit representation
but we use the full power of the hypercube connec- of processor row rp.
tions in our implementation. The processors holding 2For i = 0 to lgpi - I Do
a given row of the matrix form a Igp2-dimensional sub- 3 If no processor has > I element of row V
cube of the n-dimensional hypercube and the given row then stop.
is mapped to the same submatrix row in each processor. 4 Selecting processors with elements of row r
To map a length 2" vector onto an n-dimensional hyper- 5 fr = o
cube configured as a p, x p2 grid, we map 2" vector 6 then send last k2/2 ' + ' elements
elements to each processor with row vectors mapped in of row r to neighbor in dimension i.
column-major order and column vectors in row-major 7 else send first k2 /2 ' + i elements
order. Figure 4 illustrates how row vectors are mapped of row V to neighbor in dimension i.
onto the virtual grid both when v > a and when v < n.
The embedding of vectors as described above is load
balanced in that each processor holds an equal number The second Ifstatement guarantees that the row is kept
of elements. in a fixed order. Figure 4a illustrates the came where the

Based upon the matrix and vector embeddings de- number of elements per row in each processor is greater

"1 0. .,ansI pea-.9-M. W

SI I I

0) 1

is 0 . 6-T

Figure 4: Examples of the algorithm extract-row. The
grid indicates the grid of processors. Number ranges
indicate elements of the row vector being extracted. At Figure 5: The deposit-row primitive deposits a row vec-
the start, all elements are in a single row of processors. tor into a row of a matrix. The algorithm is basically
In case (a), each processor ends up with more than one the inverse of the extract-row algorithm.
vector element. In case (b), some processor rows do not
get any vector elements. In both cases, the final vector
is in column-major order.

than the number of processors in each column of the
processor grid. In this case the row elements are dis- JIM
persed in column-major order with each processor get- a
ting the same number of matrix elements. Figure 4b ii- ok 4 . 5
lustrates the case where the number of row elements per
processor is less than the number of processors in a col- - 6 ,.,
umn of the processor grid. In this case, each processor It
has at most one matrix element. Which rows are empty 64

depends upon which row is extracted. If no exchanges
are performed across the last-j dimensions, then only
processors that match the extracted row in the last j
bits of column address will contain vector elements. A 03 1 5

modified version can put the vector in canonical form a I
with at most ig pi extra steps.

We now count the number of messages sent where a

message is the sending of one matrix value by each ac-
tive processor. During the first communication phase, Figure 6: The reduce-to-row operation focusing on one
each active processor sends k2/2 messages, then k2/4 column of processors. In the example we are reducing 7
messages, then k2/8 and so on. Each time a message columns. The ranges indicate the processors which con-
is sent, each sending processor sends one element to a tain the partial sums of the given indices. In each step
neighbor which has fewer elements. Thus, each message of the reduce-to-row operation, each processor sends half
phase reduces the maximum number of elements per its elements to its neighbor in the ,th dimension and ac-
processor by one. Therefore, the total number of mes- cumulates what it receives into the half it keeps. The
sages sent is equal to the reduction in maximum num-
ber of elements per processor. Since at most rk2/pl process terminates when all dimenions are processed.
elements of r are left in any processor, the number of (a) If hrocemors ontain > 1 oal sum, then all pro-ceers have the same number of sum. (b) If all di-
messages sent is k2 - rk 2 /p11. measions have not yet been crossed but processors have

Using similar arguments the mesage complexities at most I partial tmm, p with higher addresses
of deposit and distribute are at most k2 - rk2/pl -I+ send their patial sum.
Ig pi, k2 - [k2/p11 +lg(fp1/k2 l) respectively. The reduce
primitive has the same message complexity as distribute
and it has an operation complexity of k2k, - [k2/p1l +

3.2.1 Parallel Operation Count

" 2 * 4 .To prove that our implementation of reduce-to-row per-

f4 & 1 W 04. 4 5" 4 forms at most a constant factor more than the opti-

4., .S. It6b141 31" =Ial number of parallel operations, we first prove that
1, ., W 4 6 8U S611 any parallel algorithm for reduce-to-row must send at

least f)(lgp) meeages regardless of how the matrix el-
(.1 ements are embedded in the hypercube. To completeI --- the optimality proof for reduce-to-row, we finally show

an * . 0 3 ,, , -,4 ,. aslower bound of kk2 parallel arithmetic operations onot a 1 4s 0 = ,> - an N= pp2processor machine.

10 0 3 7" 5 . We now argue that any algorithm that computes
, =reduce-to-row must send fl(Igp) messages. Let us as-

s ,1 "., sume that we have m > p/2, because otherwise we could
run our algorithm on a subcube of the machine. Also,
let us assume without los of generality that m, > m2,

Figure 7: The distribute-row primitive replicates a row so that m > p/4. Suppose some processor contains
vector across a matrix. Communication proceeds across O(Ig p) elements from some column. Then it must accu-
dimensions of the processor row address least signifi- mulate at least half of them locally or send at least half
cant bit to most significant bit. Each Processor sends of the elements to other processors, thus yielding the
all information to its neighbor and receives an equiva- lower bound. Suppose, instead that no processor con-
lent amount of information, thus doubling data on each tains more than Ilg p elements of any one column. Then
step. In case (b) where not all precessors hold vector some column must be embedded in at least m, / I p pro-
elements, the first steps replicate single values until all cessors. Therefore, to accumulate the column requires
processors have one vector element. Then the number Igmi - Ilggp 2 lg(p/4) - IgIgps messages. Therefore,
of values sent doubles on each successive step. we must send fl(Igp) messages.

We now count the minimum number of parallel
arithmetic steps on machine with N = P1P2 proces-

lgfpl/k2i) since processors must accumulate a local sors. The number of arithmetic operations that must

subtotal before cube swapping. b p is "2("1 - 1). Since there are only pap2
processors to perform that operation, we must use at
least (mIm2 - m2)/plp2 = n(k k2) time.

Combining the separate lower bounds, we have
3.2 Analysis that the minimum time to perform a reduce-to-row is

f(gp + k1 k2). Since the number of messages plus oper-
In this section we argue that our algorithms for the ations executed by our implementation of reduce-to-row
reduce-to-row operations is within a constant factor of is O(N p+k, k2), our implementation is optimal in terms
optimal in two ways. First we show that the paral- of asymptotic parallel execution time.
lel time (messages plus computation) required to exe- We can use arguments similar to those above to show
cute algorithms reduce-to-row is within a constant fac- an O(ki + Ig p) lower bound on message complexity for
tor of optimal. This is also true of the distribute-row the distribute operation provided we require a processor
implementation provided the embedding is nontrivial, holding e elements of a column to record e local copies.
Then we argue that the total work which is the prod- If the processors need only have one copy for each col-
uct of parallel time (T) and number of processors (P) umn of which it contains any elements, then we can
is within a constant factor of the work required for any show the lower bound provided the matrix is embedded
sequential implementation of the reduce operation pro- nontrivially. By nontrivial, we mean that no one proces-
vided k1k 2 ? lgps. In other words, our algorithm is sor can contain more than (I - I/p)m of the m matrix
optimal if the number of matrix elements per proces- elements. The basic idea is that if a processor contains
sor is at least as large as the number of dimensions of all or most of a column, then distributing within that
the hypercube (in fact, a constant fraction smaller than column is trivial. It then, however, costs that processor
Ig n is also sufficient). To argue optimality in terms of considerably to distribute along rows.
time, we state lower bounds for the number of messages
and operations required by any parallel implementation 3.2.2 Processor-Time Product
of reduce-to-row and compare them to the operation
counts argued earlier in this section. We then compare In thin section we show that the product of arithumetic
minimum number of operations with the PT product operations times number of processors is within a con-
of our implementation of reduce-to-row. To achieve the stant factor of the number of operations required by
lower bounds we use a model where each processor can any sequential reduce-to-row implementation. As ar-
only send out one message in unit time. gued above, any sequential algorithm must perform

m2(mi - 1) arithmetic operations. over a hypercube wire. Let 9 [k=/pl be the max.-
The PT product for reduce-to-row is mum number of elements per peommor after load bal-

ancing. Then the time it takes to compute without load
PT - pap2(kak2 +lg([pl/k2) - rk2/pll) balancing is ka. If we extract iust, compute and run

= mvi 2 + p1 2 lg(fV1 /k2 J) - PIP2 rk2pl I extract ian reverse, the cast of the entire computation is

MI M~2 + PI PAr2 - pip2 f 12(k/ -q)s for the menages plus qo for the computation.
The load balancing is advantageous exactly when

because we assume that k1k 2 ? Igpa. Therefore we kha > 2(k2 - q)s + q
have that (k 2 -q)G > 2(k2-q)s

PT < 2mnaMn-pp2rk2/pal a > 2s.

< 3m, m2 - 3m2. Thus a compiler need only estimate the amount of time
to perform the arithmetic and the amount of time to

This proves that the total work as indicated by the send a matrix element over a cube wire. If the com-
processor-time product is within a constant factor of piler determines that it is not advantageous to do load
optimal provided that k 1k 2 _: Igpl. balancing in such a situation, it can do a laz extract

which simply copies the row to a local array. If we want

3.3 Computing on a Single Row or Column to store the result vector back to another row of the
matrix, the decision is not entirely configuration inde-

In this subsection we discuss the cost of computing on a pendent since we must figure the cost of sending a row
single extracted row of a matrix. In particular we con- directly (worst case Ig pl) vs. the cost of an extract plus
sider whether it is always worth load balancing rather deposit (worst came 2k2 +l g P), making load balancing
than just moving the row, or column, locally within the less favorable. In this analysis we assumed there is no
processors that contain it. We consider four cases that pipeline startup cost for executing multiple arithmetic
might appear in practice: or communication steps. With a pipeline start up cost,

the decision could not be made at compile time.
I. We extract a row, operate on it, and distribute it

across the other rows. 3.4 Extensions

2. We extract a row, operate on it, and deposit it In this subsection, we discuss extensions to higher di-
back in place. mensional matrices, matrices whose dimensions are not

3. We extract a row, operate on it, and deposit it powers of 2, and matrices where rows or columns are
back into smother row. favored. We also discuss ways to represent vectors in acanonical so that we no longer distinguish between row

4. We extract a row, operate on it, and throw the and column vectors.
row away (for example, if we wanted to find the If we have t-dimensional matrices, the address of
maximum in a row). each matrix element is now divided into 9 pieces cor-

responding to indices in each of the dimensions. All
The load balancing advantage costs nothing in the implementations will extend directly by operating on

first case. Since spreading a row acros to all others the appropriate set of address bits. For example, to ex-
is efficiently implemented a an extract followed by a tract in dimensions 1 and 2, use the concatenated bits
distribute, we simply break the spread into its two pieces of the procemor addresses for these dimensions in place
and operate on the load-balanced representation in the of the row address in algorithm extract.
middle. The decision of whether or not to load balance For matrices where m, and m2 are not powers of
the vector in the second and fourth cases should be a 2, we embed the matrix in a pa x p2 matrix such that
compile-time or run-time decision, and will depend on each processor has at most ki =r mi/pi1 rows and
how many operations need to be performed, and the k2 = rmi/P21 columns. If either k, or k2 is not a power
relative time of communication and computation. We of 2, the first communication phase of an extract and
have found in the applications we have studied that the the last communication phase of a deposit, etc, will have
first case occurs frequently, so it is therefore often worth fewer messages than normal, namely tk6/21. Otherwise,
load balancing when extracting a row. We analyze the the implementations are unchanged.
second case to give an example of the considerations If we wish to optimise operations on rows, taking
required for deciding whether it is worth load balancing a penalty for operations on columns, we can configure
or not. the promeor grid such each procemor holds a mini-

In the second case we want to extract a row, oper- mum number of elements from the same row (at most
ate on it, and put it back. Let a be the time it takes to rmi/pf).
perform a single arithmetic operation of interest (e.g. a Another possible extension is to store vectors in a
divide) and let s be the time to send a matrix element canonical form. In our current implementation a vector

extracted from a row of a matrix (a row vector) will I [Extract ______

be ordered on the processors differently from a vector I E,,etsI 16K K I 6
extracted from a column of a matrix (a column vec-n per proc msec I Miop I m I Miop
tor). It is possible to store all vectors in the same or- 1 1 0 - - I

2lx 2 o0.6 - 0 o.
primitives. This, however, requires that the rows and 2 x 2-04

columns of a matrix are mapped onto the processors in 4 x 4 1.21 - 1.37 -

dering, ~ ~ ~ ~ i a8X- caoia-om ihn adtoa att u 15 - __
an noncontiguous order-one row of a matrix will no .1x8 T- - .1-longer be adjacent to the next. This will make nearest A.65 1

neighbor communication on a grid more expensive. We
believe that the better choice is to keep the two rep- _ __[Vctor-Mtx Mpy 1 _
resentations uAd swap between them when necessary. 11 Elements 1 - 16KZ_ -- 1 64K
This could be hidden from the user. per proc Imsec lop ___ _ I Manop If

I X 1 1.87 - 17 2.19 59
2 x2 2.67 48 2.99 174
4 x 4 4.37 110 5.05 415

4 Timings 8 X 8 11.19 187 11.51 728
16 16 2.90 254 f33.39 1004

We present the timings for each of the primitives on We now provide an example of performance improve-
the CM-2 along with the timings for the vector matrix ment from use of these primitives. A carefully coded
multiply and Simplex algorithms. The timings are for naive implementation of Simplex, using ki = 8 and
a square matrix in a 16384 processor machine running k2 = 8 ran at a speed of 190 milliseconds per iteration,
at 6.7 MHz. Timings reflect the total time that the which is equivalent to 44 Mflops. The version using
CM-2 was busy. Each element of the matrix is a sin- the primitives discussed in this paper takes 17 ms per
gle precision (32 bit) floating point number. Timings iteration, which is equivalent to about 500 Mflops.
for the full 65,536 processor machine are extrapolated The distribute-row implementation used for the
from the figures for the smaller machine. We give the matrix-vector multiply timing propagated row values
timings for different values of ks and k2 , the intrapro- through the intraprocessor matrix. Performance can be
cessor matrix dimensions. The times for more than I improved by propagating only one copy of each value
element per processor scale sublinearly with the total per processor. We estimate the time spent distributing
number of elements in each processor. The times are the values acros the intraprocessor matrix to be as high
presented in milliseconds, and the flop rate in Mflops. as 85% of the overhead for 16 x 16 intraprocessor ma-

trices. Hence, we could gain considerable performance
by implementing this optimization.

_l Reduce 1 5 ConclusionsSEemets' 16K [64K I " V
1e proc msec j Mop 1 I In this paper' we discus a set of powerful primitive ma-

I - -07 -0trix operations whicl4ow easy specification of parallel
-x 2 0.98 -3 2 2 matrix routines. W'dremonstrate/via oa hypercube im-

4 2 0.75 - 14 1.1 822 plementation that the additional expressive power need
4 8 4 .30 243 4.46 939 not reduce performance and can, in fact, improve per-

8× 8 4.30 243 I 4.46 939 formance by providing automatic load balancing in the
16 x 16 13.27 315 13.46 1246 case where there are more matrix elements than proces-

sors. We-describe some routines based on these primi-
tives and other simple parallel operations mdtgive some
timings for the primitives and routines for our imple-

_ Distribute] mentation on the Connection Machine.R Elements 16K] 64K] In- the future we hope-to generalize or implementa-
per proc Imsec Mflop IflopI tionuof the primitives so they work on processor grids

I x 1 0.44 - 0.44 - whose row and column sizes are not powers of two, and
2x2 0.69 0.69 - to allow a vector extracted from a row of a matrix to be
4x4 1.30 - .-30 - distributed to or deposited in either a row or column of

8X8 -0 another matrix. Wejlso hope to make oV* primitives

16 x 1 8. 8.92 - - 'available to higher level languages so that they can be
easily used.

We hope that this paper spurs interest in developing (12] S. Lenart Johnmson. Communication efficient ba-
a small set of simple matrix primitives which could then sic linear algebra computations on hypercube archi-
be efficiently implemented with a consistent interface on tectures. J. Parallel DiatrSed Comput., 4(2):133-
a large number of machines. 172, April 1987.

(13] S. Leanart Joknson and Citing-Tien Ho' Span-
Acknowledgements ning graphs for optimum broadcating and person-

Wised communiction in h wcubes. Technical Re-
Thanks to Charles Leiserson of MIT who gave us com- port YALEU/DCS/RRO, Dept. of Computer
ments on an early draft and to Lennart Johnsson of Science, Yale Univ., New Haven, CT, November
Thinking Machines Corporation and Yale who gave us 1986. Revised November 1987, YALEU/DCS/RR-
a list of relevant references. 610. To appear in IEEE Tran. Computers.

References [14] C. Moler. Matrix computation on a distributed
memory multiprocessor. In Proceedings of the
First Conference on Hvercube Multi processor.,

[1] Guy E. Blelloch. Applications and algorithms on

the Connection Machine. TR87-1, Thinking Ma- pages 161-180, August 1985.

chines Corporation, Cambridge, MA, November (15] C. H. Papadimitriou and K. Steiglits. Combina-
1987. toral Optimzation: Algorithms and Complexity.

[2] Guy E. Blelloch. Scan Primitives and Parallel Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

Vector Models. PhD thesis, Artificial Intelligence [16] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
Laboratory, Massachusetts Institute of Technology, W. T. Vetterling. Numerical Recipes. Cambridge
Cambridge, MA, November 1988. University Press, Cambridge, 1986.

[3] Peter R. Capello. Gaussian elimination on a hyper- [17] Quentin F. Stout and Bruce Wager. Passing mes-
cube automation. J. Parallel and DiUs. Comput., sages in link-bound hypercubes. In Michael T.
4:288-308, July 1987. Heath, editor, Hypercube Multiprocessors 1987,

[4] Vladimir Cherkassky and Ross Smith. Efficient Society for Industrial and Applied Mathematics,

mapping and implementation of matrix algorithms Philadelphia, PA, 1987.

on a hypercube. The Journal of Supercomputing,
2(1):7-27, September 1988.

[5] G. B. Dantzig. Linear Programming and Exten-
sions. Princeton University Press, Princeton, NJ,
1963.

[6] Sanjay R. Deshpande and Roy M. Jenevin.
Scaleability of a binary tree on a hypercube. In
1986 International Conference on Parallel Proces.
ing, pages 661-668, IEEE Computer Society, 1986.

[7] Geoffrey C. Fox, S. W. Otto, and A. J. Hey. Matrix
algorithms on a hypercube I: Matrix multiplication.
Parallel Computing, 4(1):7-31, 1987.

[8] Geoffrey C. Fox and Wojtek Furmauski. Optimal
communication algorithms on hypercube. Technical
Report CCCP-314, California Inst. of Technology,
Pasadena, CA, July 1986.

[9] G. A. Geist and M. T. Heath. Matrix factorization
on a hypercube multiprocessor. In Proceedings of
the First Conference on Hypercube Multiproceasors,
pages 161-180, August 1985.

(10] William D. Hillis. The Connection Machine. MIT
Press, Cambridge, MA, 1985.

[11] Kenneth E. Iverson. A Programming Language.
Wiley, New York, 1962.9

